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Abstract. A pattern tree [1] is a tree which propagates fuzzy terms using dif-
ferent fuzzy aggregations. Each pattern tree represents a strémtane output
class in the sense that how the fuzzy terms aggregate to predict suds.a.ita
like decision trees, pattern trees explicitly make use of t-norms (i.e., Adid)
t-conorms (OR) to build trees, which is essential for applications requitites
connected with t-conorms explicitly. Pattern trees can not only obtain high ac
racy rates in classification applications, but also be robust to over-fifting.pa-
per further extends pattern trees approach by assigning certain weigtffer-
ent trees, to reflect the nature that different trees may have diffeoafidences.
The concept of weighted pattern trees is important as it offers an optinade
off the complexity and performance of trees. In addition, it enhaneseman-
tic meaning of pattern trees. The experiments on British Telecom (BT)oesto
satisfaction dataset show that weighted pattern trees can slightly outpguédr
tern trees, and both of them are slightly better than fuzzy decision treesria ter
of prediction accuracy. In addition, the experiments show that (weiyptern
trees are robust to over-fitting. Finally, a limitation of pattern trees as leye@
BT dataset analysis is discussed and the research direction is outlined.

1 Introduction

Most of the existing fuzzy rule induction methods includiogzy decision trees [9] (the
extension of the classic decision tree induction method biynk@n [6]) focus on search-
ing for rules which only use t-norm operators [7] such as thbl léind algebraic MIN.
Disregarding of the t-conorms such as MAX and algebraic MAXue to the fact that
any rule using t-conorms can be represented by severalwiiieh use t-norms only.
This is certainly true and it is helpful to simplify the ruleduction process by consider-
ing t-norms only. However, it may fail to generate importariées in which fuzzy terms
are explicitly connected with t-conorms. Research has lbeeducted to resolve this
problem. For example, &czy, Vamos and Bib [3] have proposed fuzzy signatures to
model the complex structures of data points using diffeeggregation operators in-
cluding MIN, MAX, and average etc. Mendis, Gedeon aritEy [4] have investigated



different aggregations in fuzzy signatures. Nikraveshi&$ presented evolutionary
computation (EC) based multiple aggregator fuzzy decisiess.

Huang and Gedeon [1] have first introduced the concept ofipattees and pro-
posed a novel pattern tree induction method by means ofagityilmeasures and dif-
ferent aggregations. This paper extends that work to agsgain weights to differ-
ent pattern trees. As a result, it enhances the semanticimgeahpattern trees and
makes them more comprehensible for users. The experimeiB3 customer satisfac-
tion dataset show that weighted pattern trees can slighitigesform pattern trees. In
addition, this paper shows that pattern trees and weighaédrp trees perform more
consistently than fuzzy decision trees. The former areldapzf generating classifiers
with good generality, while the latter can easily fall inkeettrap of over-fitting. In fact,
weighted pattern trees with only two or three tree levelptdef tree) are good enough
for most experiments carried out in this paper. This pravideery transparent way to
model real world applications.

The rest of the paper is arranged as follows: Section 2 pesvide definitions for
similarity, aggregations and pattern trees, and briefljireeg the pattern tree induction
method. Readers may refer to [1][2] for detailed discusssattion 3 suggests the con-
cept of weighted pattern trees and shows how to use themdssification. Section 4
presents the experimental results over BT customer satisfiedataset. Finally, Section
5 concludes the paper and points out further research work.

2 Definitions and Pattern Tree Induction

Let A and B be two fuzzy sets [10] defined on the universe of discoufs&he root
mean square error (RMSE) of fuzzy set@nd B can be computed as

RMSE(ALE) Pé’:l(mm) —un(ey)) "

m

wherez;, j = 1,...,m, are the crisp values discretized in the variable domain, and
pa(x;) andppg(x;) are the fuzzy membership valuesaxof for A and B. The RMSE
based fuzzy set similarity can thus be defined as

S(A,B) =1— RMSE(A, B). )

The larger the value of (A, B), the more similatd and B are. Aspa(xz;), pp(x;) €
[0,1], 0 < S(A,B) < 1 holds according to (1) and (2). Note that the pattern tree
induction follows the same principle if alternative fuzat similarity definitions such
as Jaccard are used.

Fuzzy aggregations are logic operators applied to fuzzy Ipeeship values or fuzzy
sets. They have three sub-categories, namely t-norm,drogrand averaging operators
such as weighted averaging (WA) and ordered weighted avey4@WA) [8].

Triangular norms were introduced by Schweizer and Sklatd #jodel distances in
probabilistic metric spaces. In fuzzy sets theory, tridagoorms (t-norm) and triangu-
lar conorms (t-conorm) are extensively used to model Idgiparatorsand andor. The
basic t-norm and t-conorm pairs which operate on two fuzzgnbrership values and
b, a,b € [0,1] are shown in Table 1. Although the aggregations shown orjyap a
pair of fuzzy values, they can apply to multiple fuzzy valasghey retain associativity.
The definition of WA and OWA are shown as follows:



Table 1.Basic t-norms and t-conorms pairs

Name t-norm t-conorm
MIN/MAX min{a,b} = a Ablmazx{a,b} =aVb
Algebraic AND/O ab a+b—ab
tukasiewicz  [max{a+b—1,0}] min{a+0b,1}
ab a+b
EINSTEIN aran i

Definition 1 A WA operator of dimension n isa mapping £ : R” — R, that has an
associated n-elements vector w = (wy,wy, ..., w,), w; € [0,1],1 < i < n, and
>y wi = 1sothat E(a, ..., a,) = }7_ wja;.

Definition 2 An OWA operator [8] of dimension n isamapping F' : R™ — R, that has
an associated n-elements vector w = (w1, wa, - .., w,) T, w; € [0,1],1 <4 < n, and
>y wi = 1sothat F(ay,...,a,) = >25_, w;b;, where b; isthe jth largest element
of thecollection {ay, ..., a,}.

A fundamental difference of OWA from WA aggregation is thia¢ former does not
have a particular weight; associated for an element, rather a weight is associatéd wit
a particular ordered position of the element.

A pattern tree is a tree which propagates fuzzy terms usiifeyelint fuzzy aggrega-
tions. Each pattern tree represents a structure for an ocigms in the sense that how
the fuzzy terms aggregate to predict such a class. The ocigmg is located at the top
as the root of this tree. The fuzzy terms of input variablesaar different levels (except
the top) of the tree. They use fuzzy aggregations to aggdgan the bottom to the
top (root). Assume two fuzzy variables and B each have two fuzzy linguistic terms
A; andB;, i = {1,2}, and the task is to classify the data samples to either dlass
Y. Fig. 1 shows two example pattern trees, with one for ckssd the other fol. It

or NAL B2 anNz
By ananAz  (A) ®
® O

Fig. 1. Two example pattern trees

can be seen that pattern trees are built via the aggregdtiomay terms. For example,
the pattern tree foX is equivalent to fuzzy ruléB; A As) V A = X.

For a classification application which involves severalpotitclasses, the worked
model should have as many pattern trees as the number oftalgizses, with each
pattern tree representing one class. When a new data santpktad over a pattern
tree, it traverses from the bottom to the top and finishes wittuth value, indicating
a degree to which this data sample belongs to the output cfdbss pattern tree. The
output class with the maximal truth value is chosen as thdigtien class. For example,
consider that a fuzzy datd; = 0.8, A, = 0.2, By = 0, and B, = 1 is given for



classification. As the truth values of this data over pattezas for class{ andY are
0.8 and0.2 respectively,X is chosen as the output class.

The pattern tree induction method as proposed in [1][2] isflyroutlined as fol-
lows. Readers may refer to [1][2] for detailed discussionthdut losing generality,
assume a dataset hasinput variablesA;, ¢ = 1,2,...,n and one output variable
B. Further assume that input variables havduzzy linguistic terms denoted as;;,
1=1,2,...,n,andj = 1,2, ..., m, and output variable hdsfuzzy or linguistic terms
denoted af3;, j = 1,2,..., k. Thatis, each data point is represented by a fuzzy mem-
bership value vector of dimensignm + k). The task is to build: pattern trees for the
k output classes (fuzzy or linguistic terms).

The process of building a pattern tree, say for cl@gsis described as follows:

1. From fuzzy term se§ = {A,;},¢ = 1,2,...,n,andj = 1,2,...,m, choose a
fuzzy linguistic termA; ;; € S, which has the highest similarity to the output class
By as the initial tree. The fuzzy term set is updatedas S — A4, ;. The exclusion
of fuzzy termA; ;» from S is to preventd; ;; from being used more than once in
the tree.

2. Try aggregating the current tree with all fuzzy linguisgérms at sef in turn with
different aggregations. Grow the current tree using the tdy ;; from setS and
aggregation which together lead to the highest similaiiitye fuzzy term set is
updated a$ = S — Ay .

3. Keep applying 2 until no fuzzy term and aggregation lead tagher similarity
than the current one.

The above actually presents the induction $onple pattern trees. Its extension, the
general pattern trees induction [2], considers to aggregate not only fuzzy tering,
also other pattern trees. In general, simple pattern treeemy produce high predic-
tion accuracy, but also preserve compact tree structut@ke general pattern trees can
produce even better accuracy, but as a compromise produeeaomplex tree struc-
tures. Subject to the particular demands (comprehensilaili performance), simple
pattern trees and general pattern trees provide an higlelgtee methodology for real
world applications.

3 Weighted Pattern Trees

The classification using pattern trees discussed in se2tisibased on the assumption
that all pattern trees each have the same confidence on fimgdéicparticular class,
though it is not always the case in real world applicatidisghted trees are introduced
to resolve this problem. For each tree, the similarity ofhstiee to the output class is
served as a degree of confidence, to reflect how confident tthisséree to predict
such a class. For example, if the two trees in Fig. 1 have aiitids of0.1 and0.8
respectively, they can be called weighted pattern tredswaéights of0.1 and0.8. The
prediction using weighted pattern trees is the same assiragj pattern trees, except that
the final truth values are multiplied by the weights of treesan example, let's revise
the classification problem in section 2; consider classgthe fuzzy datad; = 0.8,
Ay = 0.2, By = 0,andB; = 1 over pattern trees (with weights 6f1 and0.8) in
Fig. 1, its truth values over pattern trees for classandY change ta).08 and0.16
respectively, and” (rather thanX) is therefore chosen as the output class. This reflects
the fact that, if a tree has a low weight, even an input datameagh firing strength over
such pattern tree, the prediction is not confident. Notetthiatexample is merely used



to show how weighted pattern trees work. In practice, a pattee with weight of).1
may not be trusted to predict a class.

The concept of weighted pattern trees is important. It eféaroption to trade off the
complexity and performance of pattern trees. The pattembuilding process can stop
at very compact trees, if it detects that the similaritiesi@hts) of such trees are already
larger than a user pre-defined threshold. In addition, inanbas the comprehensibility
of pattern trees. For example consider the constructioheopattern tree for class in
Fig. 1, assume that the tree growing from the primitive tBee= Y to Bo A Ay = Y
leads to the weight increase from 0.6 to 0.8, this graduatigha&an be interpreted in a
comprehensible way:

IF B = B, THEN it is possiblethatclass =Y, 3
IF B = By AND A = A, THEN itis very possiblethatclass =Y, (4)

if users pre-define semantic ranges of weights, Ieay possible: [0,0.3), possible:
[0.3,0.7), andvery possible: [0.7, 1]. Thus, the graduate change of confidence of pat-
tern trees can be monitored from the pattern tree inductioogss. This provides a very
transparent way for fuzzy modeling.

4 Experimental Results

In this section, different variants of pattern trees, nansehple pattern trees, weighted
simple pattern trees, pattern trees, and weighted pattees,tare applied to a sample
customer satisfaction dataset from BT. This dataset hatabab26 input parameters
representing ease of contact, problem understandingceequality, repair time, and
overall event handling. Among the input parameters, 6 areeamical parameters and
the rest 20 are category ones, with the number of possibleesdleing from 2 up to
17. The output parameter consists7oflasses reflecting varying degrees of customer
satisfaction.

The BT customer satisfaction dataset has 16698 data paittail. Letds, ds-odd
andds-even be the datasets which contain the whole, the odd numberddhareven
numbered data points respectively. The number of data pss ébr these three datasets
are shown in Table 2, withici = 0,...,6 standing for class. As can be seen, this

Table 2. Number of data per class for ds, ds-odd and ds-even datasets

c0Jcl]c2]c3[c4d]co5[cb
ds 1895728940273821361853891
ds-odd| 949(36591990197| 660|448446
ds-evemn946|36302037185| 701|405445

dataset is not well balanced as the number of data per class g@gnificantly. The ex-
periments of (weighted) pattern trees are carried out ieetltombinations of training-
test datasets, namelyld-even, even-odd, andds-ds. In all experiments, a simple fuzzi-
fication method based on three evenly distributed trapezaiémbership functions for
each numerical input parameter is used to transform thp ealkues into fuzzy values.
All aggregations as listed in Table 1 are allowed and thelaiity measure as shown in
(2) is used.



4.1 Prediction accuracy and overfitting

The prediction accuracy and rule number of the fuzzy decismes (FDT) with respect
to the number of data points per leaf node (used as criteti@rioinate the training),
over different combinations of training-test sets are shawrig. 2. It reveals that in
general the larger number of data points per leaf node, thie oommpact of the decision
trees would be, thus leading to more general trees. Theqgti@uiaccuracy of pattern
trees (PT) and weighted pattern trees (WPT) with respectffereint tree levels, over
different combinations of training-test sets is shown ig.H. It reveals that (simple)
pattern trees maintain good generality even their strediecomes complex.
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Fig. 3. Prediction accuracy of pattern trees and weighted pattern trees witredifteee levels

The experiments show that weighted pattern trees and patéers perform roughly
the same. In fact, the former slightly outperform the latfable 3 shows the high-
est prediction accuracy of fuzzy decision trees, (weighthple pattern trees and
(weighted) pattern trees over different combinationsaihing-test sets. Both weighted
and un-weighed pattern trees can obtain higher predictionracy than fuzzy decision
trees inodd-even and even-odd combinations. However, if considerirdg-ds combi-
nation, fuzzy decision trees perform much better. This jaflects the overfitting of
fuzzy decision trees, since fuzzy decision trees geneaage differences in classifica-
tion accuracy between tteld-even, even-odd combinations ands-ds one. The reason



Table 3. Highest prediction accuracy of fuzzy decision tree, pattern treeswaighted pattern
trees

FDT SIimPT PT

no weighfweight [no weighfweight
o0dd-evemnb0.62%51.19% [51.45%51.89% [51.929
even-oddb0.47%51.92% [52.47%51.93% [52.379
ds-ds  [71.36%51.82% [52.09%51.88% [52.18Y

is that decision tree induction considers only a portionhaf Wwhole training dataset
in choosing the branches at low levels of trees. The lack mfguthe whole training

dataset inevitably prevents the method finding generalimsal structures for all the
dataset. In contrast, pattern trees make use of the whadeirdauilding each level of
the tree, which ensures the tree to keep good generalityldesifications. Therefore,
even complex pattern trees do not suffer from over-fitting.

In addition, the experiments show that (weighted) patteres tend to converge to a
accuracy rate when the number of tree level becomes latgas ho trend of overfitting.
This property is essential to ensure a stable, compact &ctieé fuzzy model for the
problem at hand. In fact, (weighted) pattern trees with twthoee level perform very
well for all conducted experiments. That means, patteestrehich consist of maximal
23 = 8 leaf nodes can perform well, in contrast to tens, or even tathcliles used in
fuzzy decision trees. This provides a superb solution taeaeha highly effective as
well as compact fuzzy model.

4.2 Approximate accuracy

Section 4.1 presented the prediction accuracy of trees erastrict way. That is, if
and only if a data is predicted exactly as its class, thisiptiedi is counted as a correct
one. In other words, there is no distinction between “clesedrs and “gross” errors. In
BT customer dataset, this distinction is necessary as @&atsfhow far the prediction is
away from the actual class. It is much worse if a data of classiis-predicted to class
5 rather than to class 1. To resolve this problem, three acgugstimations, namely
accuracy 1, accuracy 2, andaccuracy 3 are employed to estimate prediction accuracy
which has no tolerance (the same as the one used in Sectipmodetance of adjacent
mis-prediction, and tolerance of mis-prediction withirotelosest neighbor classes in
either direction, respectively. For example in the BT detathe mis-prediction of a
class 0 data to class 2 is still counted as a correct prediitithe estimation adccuracy

3, although it is not counted in eithaccuracy 1 or accuracy 2.

Table 4 shows the highest prediction accuracy of fuzzy detisees, (weighted)
simple pattern trees and (weighted) pattern trees oveewdd-combination of training-
test sets (the results on even-odd and ds-ds combinatiensirailar and thus omit-
ted). Both weighted and unweighted pattern trees can obigirer prediction accuracy
than fuzzy decision trees in estimation of accuracy 1 anchZstimation of accu-
racy 3, weighted pattern trees perform the best, and fuzeiside trees outperform
unweighted pattern trees. Generally, accuracy 2 and 3 ax®stent with accuracy 1.
Pattern trees with a high value of accuracy 1 usually havie Vadues of accuracy 2 and
3. This table also shows that both fuzzy decision trees atidrparees can obtain over
80% prediction accuracy if the closest error can be toldrate



Table 4. Highest prediction accuracy of fuzzy decision trees, pattern tredsyaighted pattern
trees over odd-even training-test combination

FDT SImPT PT

no weightweight [no weightweight
accuracy 150.62%51.19% [51.45%51.89% [51.929
accuracy 284.02%84.08% [84.68%84.44% [84.829
accuracy $2.13%91.74% [92.70%91.85% [92.299

4.3 Interpretation of pattern trees

Each pattern tree can be interpreted as a general rule. deoimgj building level 5
simple pattern trees using odd dataset, 7 simple pattezs t@n be obtained, with each
representing one output class. Fig. 4 shows the tree fos €la3he ellipses are the
input parameters and the rectangle is the output class 0. € branch; and F'i,

i = 0,..., are category values and fuzzy terms associated with eacit jarameter.
All aggregators as shown in Table 1 are allowed to be usediarpdrees. For example,
A_AND is algebraic AND, andVA_0.84 is weighted average with weight vecter =
(0.84,0.16).

Fig. 4. Pattern tree for class O usilogd dataset

Fig. 4 roughly indicates that one example combination ymgjchighly satisfied
customers are: no call re-routing, fast fault reportingetirhigh technician compe-
tence, being well-informed through the repair process,tagh satisfaction with com-
pany/product in general. Here, we say roughly, as we userdift aggregations such
as weighted average (WA), ordered weighted average (OViggbeaic and (AAND)
etc. rather than simple AND.

These 7 pattern trees obtains an accuracy of 51.46%. Ircplati the confusion
table is shown in Table 5, whefeA andS P are number of data for actual and predicted
classes respectively.

4.4 Limitation

Itis a little strange that no prediction is madectbfor all test data. From table 5, it can
be seen that nearly all data (884 out of 946 in fact) with dles®e mis-classified to class
1. A first intuition is to raise the weight of pattern tree féass 0. However, this does
not work; the raise does not only lead to the data of class @toldssified correctly,

but also lead to the majority of data of class 1 to be class#d®dlass 0. Considering
that there are 3630 data of class 1 and only 946 data of classv@h dataset, the raise



Table 5. Confusion table for pattern tree prediction using odd-even combination

Prediction

COl CI T CZ[C3[CATC5[CE[SA
cO|[0[884] 51 [0 32| 6 |946
c1|0|3283 309|0|10| 15| 13|3630
c2|0|1122 751|1|53| 72| 38|2037
Actuall c3 (0| 59 | 94 |0| 6 | 20| 6 | 185
c4|0|122|395| 130|104 49| 701

c5|0| 50 | 142| 023|120 70| 405

c6 0| 35]129|0|371131]113 445

SP[ 055551871 2 162[464[295834

of weight for class 0 tree would therefore cause more misstfigations. This can be
seen in Fig. 5, where the fired values of first 50 data pointsclaess ineven dataset
over pattern trees constructed fraid dataset are shown. The real class line indicates
the real classes of the data; for example, data numbereddrtm9 have class 0, and
those from 50 to 99 have class 1.

Class

fired values

| M I ‘l N |
i ,L@'fm Wil

IM‘

il M

data #

Fig. 5. Fired values of first 50 data points per clas&ien dataset over pattern trees constructed
from odd dataset

The phenomena of no prediction on particular classes alsarein fuzzy decision
trees. Considering the highest accuracy of 50.62% whictyfdecision trees can obtain
over odd-even combination, no data is predictecB{a4 or c5, due to the small fraction
of data points in those classes.

An interesting experiment is carried out trying to improfie prediction accuracy
for class 0 in Table 5. The data of classes 0 and 1 in odd datssetelected as a
new training dataset, and the data which are of classes 0 aneéven dataset and are
classified as class 1 in Table 5 are selected as a new tesedd&ath fuzzy decision
trees and pattern trees are applied to the new training ddtéeated over the new test
data. Surprisingly, they obtain the same highest accurtié8.@6%. Table 6 shows the
confusion table, which only has one data predicted as clémsdit is wrong actually).
It can be concluded that the data of class 0 and class 1 car seidarated properly by
either fuzzy decision trees or pattern trees.

5 Conclusions

This paper further extends pattern trees approach by asgigartain weights to dif-
ferent trees. The concept of weighted pattern trees is itapbas it not only offers



Table 6. Confusion table for prediction of both fuzzy decision trees and pattees trsing new
training and test datasets

Prediction

COl cI [SA
c0 [ 0] 884884
Actual| c1 | 1]32823283
SP[1]4166416

an option to trade off the complexity and performance ofdrdeit also enhances the
semantics of pattern trees.

The experiments on British Telecom customer satisfact&askt show that weighted
pattern trees can slightly outperform pattern trees, arkl dbthem are slightly better
than fuzzy decision trees in terms of prediction accuratyaddition, the experiments
show that (weighted) pattern trees are robust to overditlim practice, weighted pat-
tern trees with only two or three tree levels are good enowghmifost experiments
carried out in this paper. This of course provides a verysjparent way to model the
problems at hand.

Further research on assignment of weights to pattern teeesdessary. The cur-
rent version simply makes use of similarity measures asht®idgvore sophisticated
assignment may be more suitable and can therefore leadhertagcuracy.
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