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Abstract. A pattern tree [1] is a tree which propagates fuzzy terms using dif-
ferent fuzzy aggregations. Each pattern tree represents a structurefor an output
class in the sense that how the fuzzy terms aggregate to predict such a class. Un-
like decision trees, pattern trees explicitly make use of t-norms (i.e., AND)and
t-conorms (OR) to build trees, which is essential for applications requiringrules
connected with t-conorms explicitly. Pattern trees can not only obtain high accu-
racy rates in classification applications, but also be robust to over-fitting.This pa-
per further extends pattern trees approach by assigning certain weightsto differ-
ent trees, to reflect the nature that different trees may have different confidences.
The concept of weighted pattern trees is important as it offers an option totrade
off the complexity and performance of trees. In addition, it enhances the seman-
tic meaning of pattern trees. The experiments on British Telecom (BT) customer
satisfaction dataset show that weighted pattern trees can slightly outperform pat-
tern trees, and both of them are slightly better than fuzzy decision trees in terms
of prediction accuracy. In addition, the experiments show that (weighted) pattern
trees are robust to over-fitting. Finally, a limitation of pattern trees as revealed via
BT dataset analysis is discussed and the research direction is outlined.

1 Introduction

Most of the existing fuzzy rule induction methods includingfuzzy decision trees [9] (the
extension of the classic decision tree induction method by Quinlan [6]) focus on search-
ing for rules which only use t-norm operators [7] such as the MIN and algebraic MIN.
Disregarding of the t-conorms such as MAX and algebraic MAX is due to the fact that
any rule using t-conorms can be represented by several ruleswhich use t-norms only.
This is certainly true and it is helpful to simplify the rule induction process by consider-
ing t-norms only. However, it may fail to generate importantrules in which fuzzy terms
are explicitly connected with t-conorms. Research has beenconducted to resolve this
problem. For example, Ḱoczy, Vámos and Biŕo [3] have proposed fuzzy signatures to
model the complex structures of data points using differentaggregation operators in-
cluding MIN, MAX, and average etc. Mendis, Gedeon and Kóczy [4] have investigated



different aggregations in fuzzy signatures. Nikravesh [5]has presented evolutionary
computation (EC) based multiple aggregator fuzzy decisiontrees.

Huang and Gedeon [1] have first introduced the concept of pattern trees and pro-
posed a novel pattern tree induction method by means of similarity measures and dif-
ferent aggregations. This paper extends that work to assigncertain weights to differ-
ent pattern trees. As a result, it enhances the semantic meaning of pattern trees and
makes them more comprehensible for users. The experiments on BT customer satisfac-
tion dataset show that weighted pattern trees can slightly outperform pattern trees. In
addition, this paper shows that pattern trees and weighted pattern trees perform more
consistently than fuzzy decision trees. The former are capable of generating classifiers
with good generality, while the latter can easily fall into the trap of over-fitting. In fact,
weighted pattern trees with only two or three tree levels (depth of tree) are good enough
for most experiments carried out in this paper. This provides a very transparent way to
model real world applications.

The rest of the paper is arranged as follows: Section 2 provides the definitions for
similarity, aggregations and pattern trees, and briefly outlines the pattern tree induction
method. Readers may refer to [1][2] for detailed discussion. Section 3 suggests the con-
cept of weighted pattern trees and shows how to use them for classification. Section 4
presents the experimental results over BT customer satisfaction dataset. Finally, Section
5 concludes the paper and points out further research work.

2 Definitions and Pattern Tree Induction

Let A andB be two fuzzy sets [10] defined on the universe of discourseU . The root
mean square error (RMSE) of fuzzy setsA andB can be computed as

RMSE(A,B) =

√

∑m
j=1

(µA(xj) − µB(xj))2

m
, (1)

wherexj , j = 1, . . . ,m, are the crisp values discretized in the variable domain, and
µA(xj) andµB(xj) are the fuzzy membership values ofxj for A andB. The RMSE
based fuzzy set similarity can thus be defined as

S(A,B) = 1 − RMSE(A,B). (2)

The larger the value ofS(A,B), the more similarA andB are. AsµA(xj), µB(xj) ∈
[0, 1], 0 ≤ S(A,B) ≤ 1 holds according to (1) and (2). Note that the pattern tree
induction follows the same principle if alternative fuzzy set similarity definitions such
as Jaccard are used.

Fuzzy aggregations are logic operators applied to fuzzy membership values or fuzzy
sets. They have three sub-categories, namely t-norm, t-conorm, and averaging operators
such as weighted averaging (WA) and ordered weighted averaging (OWA) [8].

Triangular norms were introduced by Schweizer and Sklar [7]to model distances in
probabilistic metric spaces. In fuzzy sets theory, triangular norms (t-norm) and triangu-
lar conorms (t-conorm) are extensively used to model logical operatorsand andor. The
basic t-norm and t-conorm pairs which operate on two fuzzy membership valuesa and
b, a, b ∈ [0, 1] are shown in Table 1. Although the aggregations shown only apply to a
pair of fuzzy values, they can apply to multiple fuzzy valuesas they retain associativity.
The definition of WA and OWA are shown as follows:



Table 1.Basic t-norms and t-conorms pairs

Name t-norm t-conorm
MIN/MAX min{a, b} = a ∧ b max{a, b} = a ∨ b

Algebraic AND/OR ab a + b − ab
Łukasiewicz max{a + b − 1, 0} min{a + b, 1}
EINSTEIN ab

2−(a+b−ab)
a+b

1+ab

Definition 1 A WA operator of dimension n is a mapping E : R
n → R, that has an

associated n-elements vector w = (w1, w2, . . . , wn)T , wi ∈ [0, 1], 1 ≤ i ≤ n, and
∑n

i=1
wi = 1 so that E(a1, . . . , an) =

∑n

j=1
wjaj .

Definition 2 An OWA operator [8] of dimension n is a mapping F : R
n → R, that has

an associated n-elements vector w = (w1, w2, . . . , wn)T , wi ∈ [0, 1], 1 ≤ i ≤ n, and
∑n

i=1
wi = 1 so that F (a1, . . . , an) =

∑n
j=1

wjbj , where bj is the jth largest element
of the collection {a1, . . . , an}.

A fundamental difference of OWA from WA aggregation is that the former does not
have a particular weightwi associated for an element, rather a weight is associated with
a particular ordered position of the element.

A pattern tree is a tree which propagates fuzzy terms using different fuzzy aggrega-
tions. Each pattern tree represents a structure for an output class in the sense that how
the fuzzy terms aggregate to predict such a class. The outputclass is located at the top
as the root of this tree. The fuzzy terms of input variables are on different levels (except
the top) of the tree. They use fuzzy aggregations to aggregate from the bottom to the
top (root). Assume two fuzzy variablesA andB each have two fuzzy linguistic terms
Ai andBi, i = {1, 2}, and the task is to classify the data samples to either classX or
Y . Fig. 1 shows two example pattern trees, with one for classX and the other forY . It

and
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Fig. 1.Two example pattern trees

can be seen that pattern trees are built via the aggregation of fuzzy terms. For example,
the pattern tree forX is equivalent to fuzzy rule(B1 ∧ A2) ∨ A1 ⇒ X.

For a classification application which involves several output classes, the worked
model should have as many pattern trees as the number of output classes, with each
pattern tree representing one class. When a new data sample istested over a pattern
tree, it traverses from the bottom to the top and finishes witha truth value, indicating
a degree to which this data sample belongs to the output classof this pattern tree. The
output class with the maximal truth value is chosen as the prediction class. For example,
consider that a fuzzy dataA1 = 0.8, A2 = 0.2, B1 = 0, andB2 = 1 is given for



classification. As the truth values of this data over patterntrees for classX andY are
0.8 and0.2 respectively,X is chosen as the output class.

The pattern tree induction method as proposed in [1][2] is briefly outlined as fol-
lows. Readers may refer to [1][2] for detailed discussion. Without losing generality,
assume a dataset hasn input variablesAi, i = 1, 2, . . . , n and one output variable
B. Further assume that input variables havem fuzzy linguistic terms denoted asAij ,
i = 1, 2, . . . , n, andj = 1, 2, . . . ,m, and output variable hask fuzzy or linguistic terms
denoted asBj , j = 1, 2, . . . , k. That is, each data point is represented by a fuzzy mem-
bership value vector of dimension(nm + k). The task is to buildk pattern trees for the
k output classes (fuzzy or linguistic terms).

The process of building a pattern tree, say for classB0, is described as follows:

1. From fuzzy term setS = {Aij}, i = 1, 2, . . . , n, andj = 1, 2, . . . ,m, choose a
fuzzy linguistic termAi′j′ ∈ S, which has the highest similarity to the output class
B0 as the initial tree. The fuzzy term set is updated asS = S−Ai′j′ . The exclusion
of fuzzy termAi′j′ from S is to preventAi′j′ from being used more than once in
the tree.

2. Try aggregating the current tree with all fuzzy linguistic terms at setS in turn with
different aggregations. Grow the current tree using the term Ai′j′ from setS and
aggregation which together lead to the highest similarity.The fuzzy term set is
updated asS = S − Ai′j′ .

3. Keep applying 2 until no fuzzy term and aggregation lead toa higher similarity
than the current one.

The above actually presents the induction forsimple pattern trees. Its extension, the
general pattern trees induction [2], considers to aggregate not only fuzzy terms,but
also other pattern trees. In general, simple pattern trees not only produce high predic-
tion accuracy, but also preserve compact tree structures, while general pattern trees can
produce even better accuracy, but as a compromise produce more complex tree struc-
tures. Subject to the particular demands (comprehensibility or performance), simple
pattern trees and general pattern trees provide an highly effective methodology for real
world applications.

3 Weighted Pattern Trees

The classification using pattern trees discussed in section2 is based on the assumption
that all pattern trees each have the same confidence on predicting a particular class,
though it is not always the case in real world applications.Weighted trees are introduced
to resolve this problem. For each tree, the similarity of such tree to the output class is
served as a degree of confidence, to reflect how confident to usethis tree to predict
such a class. For example, if the two trees in Fig. 1 have similarities of0.1 and0.8
respectively, they can be called weighted pattern trees with weights of0.1 and0.8. The
prediction using weighted pattern trees is the same as that using pattern trees, except that
the final truth values are multiplied by the weights of trees.As an example, let’s revise
the classification problem in section 2; consider classifying the fuzzy dataA1 = 0.8,
A2 = 0.2, B1 = 0, andB2 = 1 over pattern trees (with weights of0.1 and0.8) in
Fig. 1, its truth values over pattern trees for classX andY change to0.08 and0.16
respectively, andY (rather thanX) is therefore chosen as the output class. This reflects
the fact that, if a tree has a low weight, even an input data hasa high firing strength over
such pattern tree, the prediction is not confident. Note thatthis example is merely used



to show how weighted pattern trees work. In practice, a pattern tree with weight of0.1
may not be trusted to predict a class.

The concept of weighted pattern trees is important. It offers an option to trade off the
complexity and performance of pattern trees. The pattern tree building process can stop
at very compact trees, if it detects that the similarities (weights) of such trees are already
larger than a user pre-defined threshold. In addition, it enhances the comprehensibility
of pattern trees. For example consider the construction of the pattern tree for classY in
Fig. 1, assume that the tree growing from the primitive treeB2 ⇒ Y to B2 ∧ A2 ⇒ Y
leads to the weight increase from 0.6 to 0.8, this gradual change can be interpreted in a
comprehensible way:

IF B = B2 THEN it is possiblethatclass = Y, (3)
IF B = B2 AND A = A2 THEN it is very possiblethatclass = Y, (4)

if users pre-define semantic ranges of weights, sayless possible: [0, 0.3), possible:
[0.3, 0.7), andvery possible: [0.7, 1]. Thus, the graduate change of confidence of pat-
tern trees can be monitored from the pattern tree induction process. This provides a very
transparent way for fuzzy modeling.

4 Experimental Results

In this section, different variants of pattern trees, namely simple pattern trees, weighted
simple pattern trees, pattern trees, and weighted pattern trees, are applied to a sample
customer satisfaction dataset from BT. This dataset has a total of 26 input parameters
representing ease of contact, problem understanding, service quality, repair time, and
overall event handling. Among the input parameters, 6 are numerical parameters and
the rest 20 are category ones, with the number of possible values being from 2 up to
17. The output parameter consists of7 classes reflecting varying degrees of customer
satisfaction.

The BT customer satisfaction dataset has 16698 data points in total. Letds, ds-odd
andds-even be the datasets which contain the whole, the odd numbered, and the even
numbered data points respectively. The number of data per class for these three datasets
are shown in Table 2, with ci, i = 0, . . . , 6 standing for classi. As can be seen, this

Table 2.Number of data per class for ds, ds-odd and ds-even datasets

c0 c1 c2 c3 c4 c5 c6
ds 189572894027382 1361853 891
ds-odd 949 36591990197 660 448 446
ds-even946 36302037185 701 405 445

dataset is not well balanced as the number of data per class varies significantly. The ex-
periments of (weighted) pattern trees are carried out in three combinations of training-
test datasets, namely,odd-even, even-odd, andds-ds. In all experiments, a simple fuzzi-
fication method based on three evenly distributed trapezoidal membership functions for
each numerical input parameter is used to transform the crisp values into fuzzy values.
All aggregations as listed in Table 1 are allowed and the similarity measure as shown in
(2) is used.



4.1 Prediction accuracy and overfitting

The prediction accuracy and rule number of the fuzzy decision trees (FDT) with respect
to the number of data points per leaf node (used as criteria toterminate the training),
over different combinations of training-test sets are shown in Fig. 2. It reveals that in
general the larger number of data points per leaf node, the more compact of the decision
trees would be, thus leading to more general trees. The prediction accuracy of pattern
trees (PT) and weighted pattern trees (WPT) with respect to different tree levels, over
different combinations of training-test sets is shown in Fig. 3. It reveals that (simple)
pattern trees maintain good generality even their structure becomes complex.

0 200 400 600 800 1000 1200
40

50

60

70

80

90

100

 number of data per leaf node

 pr
edi

ctio
n a

ccu
rac

y

odd−even
even−odd
ds−ds

0 200 400 600 800 1000 1200
0

500

1000

1500

2000

2500

3000

 number of data per leaf node

 nu
mb

er o
f ru

les

odd−even
even−odd
ds−ds

Fig. 2.Prediction accuracy and rule number of fuzzy decision trees with different number of data
points per leaf node
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Fig. 3.Prediction accuracy of pattern trees and weighted pattern trees with different tree levels

The experiments show that weighted pattern trees and pattern trees perform roughly
the same. In fact, the former slightly outperform the latter. Table 3 shows the high-
est prediction accuracy of fuzzy decision trees, (weighted) simple pattern trees and
(weighted) pattern trees over different combinations of training-test sets. Both weighted
and un-weighed pattern trees can obtain higher prediction accuracy than fuzzy decision
trees inodd-even and even-odd combinations. However, if consideringds-ds combi-
nation, fuzzy decision trees perform much better. This justreflects the overfitting of
fuzzy decision trees, since fuzzy decision trees generate large differences in classifica-
tion accuracy between theodd-even, even-odd combinations andds-ds one. The reason



Table 3. Highest prediction accuracy of fuzzy decision tree, pattern trees, andweighted pattern
trees

FDT SimPT PT
no weightweight no weightweight

odd-even50.62%51.19% 51.45%51.89% 51.92%
even-odd50.47%51.92% 52.47%51.93% 52.37%
ds-ds 71.36%51.82% 52.09%51.88% 52.18%

is that decision tree induction considers only a portion of the whole training dataset
in choosing the branches at low levels of trees. The lack of using the whole training
dataset inevitably prevents the method finding generalizedtree structures for all the
dataset. In contrast, pattern trees make use of the whole data in building each level of
the tree, which ensures the tree to keep good generality for classifications. Therefore,
even complex pattern trees do not suffer from over-fitting.

In addition, the experiments show that (weighted) pattern trees tend to converge to a
accuracy rate when the number of tree level becomes large. Ithas no trend of overfitting.
This property is essential to ensure a stable, compact and effective fuzzy model for the
problem at hand. In fact, (weighted) pattern trees with two or three level perform very
well for all conducted experiments. That means, pattern trees which consist of maximal
23 = 8 leaf nodes can perform well, in contrast to tens, or even hundred rules used in
fuzzy decision trees. This provides a superb solution to achieve a highly effective as
well as compact fuzzy model.

4.2 Approximate accuracy

Section 4.1 presented the prediction accuracy of trees in a very strict way. That is, if
and only if a data is predicted exactly as its class, this prediction is counted as a correct
one. In other words, there is no distinction between “close”errors and “gross” errors. In
BT customer dataset, this distinction is necessary as it reflects how far the prediction is
away from the actual class. It is much worse if a data of class 0is mis-predicted to class
5 rather than to class 1. To resolve this problem, three accuracy estimations, namely
accuracy 1, accuracy 2, andaccuracy 3 are employed to estimate prediction accuracy
which has no tolerance (the same as the one used in Section 4.1), tolerance of adjacent
mis-prediction, and tolerance of mis-prediction within two closest neighbor classes in
either direction, respectively. For example in the BT dataset, the mis-prediction of a
class 0 data to class 2 is still counted as a correct prediction in the estimation ofaccuracy
3, although it is not counted in eitheraccuracy 1 or accuracy 2.

Table 4 shows the highest prediction accuracy of fuzzy decision trees, (weighted)
simple pattern trees and (weighted) pattern trees over odd-even combination of training-
test sets (the results on even-odd and ds-ds combinations are similar and thus omit-
ted). Both weighted and unweighted pattern trees can obtainhigher prediction accuracy
than fuzzy decision trees in estimation of accuracy 1 and 2. In estimation of accu-
racy 3, weighted pattern trees perform the best, and fuzzy decision trees outperform
unweighted pattern trees. Generally, accuracy 2 and 3 are consistent with accuracy 1.
Pattern trees with a high value of accuracy 1 usually have high values of accuracy 2 and
3. This table also shows that both fuzzy decision trees and pattern trees can obtain over
80% prediction accuracy if the closest error can be tolerated.



Table 4.Highest prediction accuracy of fuzzy decision trees, pattern trees, and weighted pattern
trees over odd-even training-test combination

FDT SimPT PT
no weightweight no weightweight

accuracy 150.62%51.19% 51.45%51.89% 51.92%
accuracy 284.02%84.08% 84.68%84.44% 84.82%
accuracy 392.13%91.74% 92.70%91.85% 92.29%

4.3 Interpretation of pattern trees

Each pattern tree can be interpreted as a general rule. Considering building level 5
simple pattern trees using odd dataset, 7 simple pattern trees can be obtained, with each
representing one output class. Fig. 4 shows the tree for class 0. The ellipses are the
input parameters and the rectangle is the output class 0. Over each branch,i andFi,
i = 0, . . ., are category values and fuzzy terms associated with each input parameter.
All aggregators as shown in Table 1 are allowed to be used in pattern trees. For example,
A AND is algebraic AND, andWA 0.84 is weighted average with weight vectorw =
(0.84, 0.16).
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Fig. 4.Pattern tree for class 0 usingodd dataset

Fig. 4 roughly indicates that one example combination yielding highly satisfied
customers are: no call re-routing, fast fault reporting time, high technician compe-
tence, being well-informed through the repair process, andhigh satisfaction with com-
pany/product in general. Here, we say roughly, as we use different aggregations such
as weighted average (WA), ordered weighted average (OWA), algebraic and (AAND)
etc. rather than simple AND.

These 7 pattern trees obtains an accuracy of 51.46%. In particular, the confusion
table is shown in Table 5, whereSA andSP are number of data for actual and predicted
classes respectively.

4.4 Limitation

It is a little strange that no prediction is made toc0 for all test data. From table 5, it can
be seen that nearly all data (884 out of 946 in fact) with class0 are mis-classified to class
1. A first intuition is to raise the weight of pattern tree for class 0. However, this does
not work; the raise does not only lead to the data of class 0 to be classified correctly,
but also lead to the majority of data of class 1 to be classifiedas class 0. Considering
that there are 3630 data of class 1 and only 946 data of class 0 in even dataset, the raise



Table 5.Confusion table for pattern tree prediction using odd-even combination

Prediction
c0 c1 c2 c3 c4 c5 c6 SA

c0 0 884 51 0 3 2 6 946
c1 0 3283 309 0 10 15 13 3630
c2 0 1122 751 1 53 72 38 2037

Actual c3 0 59 94 0 6 20 6 185
c4 0 122 395 1 30 104 49 701
c5 0 50 142 0 23 120 70 405
c6 0 35 129 0 37 131 113 445

SP 0 5555 1871 2 162 464 295 8349

of weight for class 0 tree would therefore cause more mis-classifications. This can be
seen in Fig. 5, where the fired values of first 50 data points perclass ineven dataset
over pattern trees constructed fromodd dataset are shown. The real class line indicates
the real classes of the data; for example, data numbered from0 to 49 have class 0, and
those from 50 to 99 have class 1.
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Fig. 5. Fired values of first 50 data points per class ineven dataset over pattern trees constructed
from odd dataset

The phenomena of no prediction on particular classes also occurs in fuzzy decision
trees. Considering the highest accuracy of 50.62% which fuzzy decision trees can obtain
over odd-even combination, no data is predicted toc3, c4 or c5, due to the small fraction
of data points in those classes.

An interesting experiment is carried out trying to improve the prediction accuracy
for class 0 in Table 5. The data of classes 0 and 1 in odd datasetare selected as a
new training dataset, and the data which are of classes 0 and 1in even dataset and are
classified as class 1 in Table 5 are selected as a new test dataset. Both fuzzy decision
trees and pattern trees are applied to the new training data and tested over the new test
data. Surprisingly, they obtain the same highest accuracy of 78.76%. Table 6 shows the
confusion table, which only has one data predicted as class 0(and it is wrong actually).
It can be concluded that the data of class 0 and class 1 can not be separated properly by
either fuzzy decision trees or pattern trees.

5 Conclusions

This paper further extends pattern trees approach by assigning certain weights to dif-
ferent trees. The concept of weighted pattern trees is important as it not only offers



Table 6.Confusion table for prediction of both fuzzy decision trees and pattern trees using new
training and test datasets

Prediction
c0 c1 SA

c0 0 884 884
Actual c1 1 3282 3283

SP 1 4166 4167

an option to trade off the complexity and performance of trees, but also enhances the
semantics of pattern trees.

The experiments on British Telecom customer satisfaction dataset show that weighted
pattern trees can slightly outperform pattern trees, and both of them are slightly better
than fuzzy decision trees in terms of prediction accuracy. In addition, the experiments
show that (weighted) pattern trees are robust to over-fitting. In practice, weighted pat-
tern trees with only two or three tree levels are good enough for most experiments
carried out in this paper. This of course provides a very transparent way to model the
problems at hand.

Further research on assignment of weights to pattern trees is necessary. The cur-
rent version simply makes use of similarity measures as weights. More sophisticated
assignment may be more suitable and can therefore lead to higher accuracy.
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